top of page
  • TERREOM

BIEN COMPRENDRE SON ANALYSE DE SOL : INDICATEURS, SIGNIFICATION, VALEUR

Dernière mise à jour : 23 nov. 2022


Analyse de sol - Comprendre les indicateurs et leur valeur

I. BIEN PRÉPARER SON ÉCHANTILLON DE TERRE


II. L'ANALYSE DE SOL, UN OUTIL RICHE EN INFORMATIONS

A. L'analyse de sol, plusieurs grandes catégories d'indicateurs`

B. Granulométrie et texture

C. La matière organique

1. Quel est le bon taux de matière organique pour un sol ?

2. Le rapport C/N

3. Le coefficient de minéralisation de la matière organique

4. L'indice d'activité microbienne

5. Le bilan humique

D. La capacité d'échange cationique (CEC)

1. La taille de la CEC

2. Le taux de saturation de la CEC

3. Composition et équilibre de la CEC

E. PH et bilan acide-base

1. Le pH KCl et l'acidité de réserve du sol

2. Le pH H2O et l'acidité actuelle du sol

3. Carbonate de calcium, calcaire actif et pouvoir chlorosant du sol

F. Macro et oligoéléments

1. Les macroéléments principaux

2. Les oligoéléments

3. Les équilibres entre les éléments


III. L'ANALYSE DE SOL, UN OUTIL À COMPLÉTER

A. Analyse de sol et hétérogénéité spatiale

B. L'analyse de sol, une vision partielle de la fertilité du sol


Le sol est un milieu en constante évolution : les échanges et les transformations y sont permanents. À titre d’illustration, en voici quelques aspects :

Analyse de sol - Comprendre les indicateurs et leur valeur - Le sol, un système en évolution permanente
Le sol est un milieu en évolution permanente

  1. Au cours de son cycle, la plante prélève différents éléments dans le sol,

  2. En retour, elle restitue une partie des produits de la photosynthèse au niveau des racines.

  3. Cet échange stimule la vie du sol et engendre un changement des paramètres dans la périphérie de la rhizosphère. En retour, les échanges sol-plante s'en trouvent modifiés.

  4. L'ensemble de ce fonctionnement fluctue aussi en fonction des conditions climatiques : par exemple, le processus de photosynthèse est largement stimulé en période ensoleillée.

  5. Par ailleurs, un excès de pluviométrie peut engendrer la lixiviation de molécules telles que les nitrates.

  6. Bien sûr, beaucoup d’autres phénomènes viennent s’ajouter à cette liste. Dès lors, suivre la manière dont évolue son sol apparaît primordial pour bien adapter ses pratiques dans le temps. En ce sens, l’analyse de sol est un des outils importants de suivi. Plusieurs questions se posent : Comment bien préparer son échantillon pour obtenir une analyse de sol représentative ? Quelles informations sont couramment accessibles dans ce document ? Quels sont les différents indicateurs ? Quelle est leur signification ? Comment interpréter leur valeur pour adapter ses pratiques en conséquence ? L'analys sont-elles suffisantes een dsoi ?

  7. Ces différentes transformations modifient les conditions du sol et la boucle repart de nouveau.


Bien sûr, beaucoup d’autres phénomènes viennent s’ajouter à cette liste. Dès lors, suivre la manière dont évolue son sol apparaît primordial pour bien adapter ses pratiques dans le temps. En ce sens, l’analyse de sol est un des outils importants de suivi. Plusieurs questions se posent : Comment bien préparer son échantillon pour obtenir une analyse de sol représentative ? Quelles informations sont couramment accessibles dans ce document ? Quels sont les différents indicateurs ? Quelle est leur signification ? Comment interpréter leur valeur pour adapter ses pratiques en conséquence ? L'analyse de sol est-elle suffisante en soi pour connaître la fertilité du sol d'une parcelle ?


Cet article aborde l'ensemble de ces questions pour y apporter une réponse. Nous nous placerons ici dans la configuration d'une analyse de sol classique.



I. BIEN PRÉPARER SON ÉCHANTILLON DE TERRE POUR UNE ANALYSE DE SOL REPRÉSENTATIVE


En règle générale, un volume de terre de 25 cm de profondeur sur un hectare pèse entre 2700 et 3200 T. Le poids d'un échantillon envoyé pour l'analyse se situe entre 500 g et 1 kg : dans ces conditions, il est facile de comprendre l'importance de réaliser un prélèvement le plus représentatif possible de la parcelle. À ce titre, plusieurs points sont à retenir.


En premier lieu, la technique de prélèvement : il en existe trois principales (voir figure ci-contre).


Bien comprendre son analyse de sol - Protocole de prélèvement - Techniques
En ligne, cercle ou zigzag : trois techniques différentes pour effectuer les prélèvements sur la parcelle

S'ajoutent ensuite les éléments suivants :

​OÙ ?

  • ​Choisir un zone homogène de la parcelle,

  • Éviter les talus, les mouillères, les zones de stockage des effluents, les anciens chemins, les bordures de champ, les zones humides ou les bordures des haies.

​QUAND ?

  • Réaliser le prélèvement de préférence pendant l'interculture,

  • Faire l'opération, chaque fois, à la même période pour pouvoir comparer les résultats,

  • Attendre 2 mois après un apport d'engrais minéral et 4 mois après un amendement calcique ou un épandage d'effluent organique.

​COMMENT ?

  • Réaliser entre 15 et 20 prélèvements d'échantillon sur la parcelle identifiée en appliquant l'une des 3 méthodes abordées précédemment,

  • Prélever sur la profondeur de travail du sol (pour les prairies permanentes, le prélèvement se fera sur les cinq premiers centimètres),

  • En cas de changement de couleur, jeter la partie de sol de l'horizon inférieur,

  • Émietter chaque échantillon dans le seau en prenant soin d'enlever les cailloux,

  • Homogénéiser soigneusement le mélange avant de mettre la terre dans l'emballage,

  • Remplir la feuille de renseignement en indiquant les informations suivantes : localisation du point de prélèvement (coordonnées GPS), date de prélèvement, type de sol, culture précédente et suivante, autre annotation permettant d'identifier l'analyse (notamment si plusieurs analyses sont réalisés sur une même parcelle culturale).

MATÉRIEL DE PRÉLÈVEMENT RECOMMANDÉ

  • Tarière ou pelle ou bêche en acier inoxydable ou en plastique,

  • Seau en plastique épais,

  • Couteau.


PRÉCAUTIONS COMPLÉMENTAIRES

  • Conserver l'échantillon au frais le temps de l'envoyer,

  • ​Faire analyser à chaque fois par le même laboratoire.

À compter de l'envoi, les délais d'analyse sont en règle générale de 45 jours. Une fois l'analyse parvenue, vient le moment de l'interprétation des résultats.



II. L'ANALYSE DE SOL, UN OUTIL RICHE EN INFORMATIONS


A. L'analyse de sol, plusieurs grandes catégories d'indicateurs


Une analyse de sol classique regroupe cinq grandes catégories d'indicateur : "granulométrie et texture", "matière organique", "capacité d'échange cationique", "pH et bilan acide-base", "macro et oligoéléments".

Bien comprendre son analyse de sol - Les grandes catégories d'indicateurs de l'analyse de sol
L'analyse de sol offre un regard sur plusieurs aspects complémentaires de la fertilité du sol

Chaque catégorie compte plusieurs indicateurs fournissant chacun une information. Dès à présent, abordons-les successivement..



B. Analyse de sol , granulométrie et texture


Le classement textural repose sur la proportion respective en argiles, en limons et en sables. Ils sont classés en fonction de leur taille, indépendamment de leur constitution minéralogique.


Bien comprendre son analyse de sol - Granulométrie du sol
Dimension de particules en fonction des catégories

Dans un second temps, la répartition entre les différentes catégories granulométriques permet d'identifier le type de sol dominant. À ce titre, il existe plusieurs triangles des textures, celui ci-contre est le plus couramment utilisé.


Bien comprendre son analyse de sol - Granulométrie et texture - Triangle des textures
Lien entre la répartition granulométrie et la texture du sol

C. Analyse de sol et matière organique


La matière organique du sol revient au centre des considérations, grâce notamment à l'émergence de courants comme la conservation des sols ou l'agroécologie. Elle est la clé de voûte de la fertilité du sol tant physique, chimique que biologique. À ce titre, il est vivement recommandé de mettre en place une politique de gestion du carbone du sol, en parallèle de la gestion classique des éléments fertilisants.

La quantité de matière organique d'un échantillon de sol est déterminée en mesurant la masse de carbone présent. Le chiffre obtenu est ensuite multiplié par 1,72 pour estimer le taux de matière organique.


1. Quel est le bon taux de matière organique pour un sol ?


Cette question est récurrente dans le paysage agricole. L'interprétation de la teneur en MO dépend du type de sol considéré : plus le sol est argileux, plus le taux minimum doit être élevé. Le calcul d'un taux seuil sera d'autant plus précis que le taux d'argile est communiqué dans l'analyse de sol.


a. En l'absence d'indication du taux d'argile

Dans cette situation, les bonnes zones de valeur sont déterminées au regard de la texture dominante.

Bien comprendre son analyse de sol - MO et texture dominante
Matière organique : valeur seuil à retenir en fonction de la texture dominante du sol

Si les seuils indiqués pour les sables ou les limons sont assez proches de la réalité à obtenir, celui pour les argiles sera certainement trop faible dès lors que le taux d'argile sera bien au-dessus de 20%.


b. Une réponse plus précise grâce au rapport MO/argile

Les travaux de Pascal BOIVIN, agronome suisse, et de son équipe ont permis d'établir une relation assez bonne entre l'état structural du sol (évalué à partir du test bêche) et l'équilibre entre argile et matière organique.

Bien comprendre son analyse de sol - Relation rapport MO-Argile et structure du sol
Lien entre la valeur du ratio MO/argiles et la notation du test bêche

En ce sens, la structure du sol devient intéressante dès lors que le rapport MO%/Argiles% est supérieur à 0,17. Elle est idéale au-delà d'une valeur de 0,24.



2. Le rapport C/N


Cet indicateur est obtenu à partir de la comparaison des teneurs en carbone et en azote. Il est utile pour évaluer le niveau de fonctionnement de la vie du sol.

Bien comprendre son analyse de sol - pH et C/N
pH et rapport C/N : les bonnes zones pour un fonctionnement optimal du sol

Idéalement, ce rapport doit être compris entre 9 et 11 dans un intervalle de pH entre 6,2 et 6,8.



3. Le coefficient de minéralisation de la matière organique


Le sol contient un stock plus ou moins important de matière organique. Chaque année, ce dernier diminue peu à peu compte tenu du fonctionnement de la vie du sol, qui se nourrit essentiellement de carbone. Le calcul du coefficient de minéralisation K2 permet d'en connaître le niveau de consommation.

À l'échelle du territoire français, deux formules de calcul existent : le choix entre l'une ou l'autre dépend de la localisation géographique de la parcelle. Les facteurs sont variables de l'une à l'autre.


Bien comprendre son analyse de sol - Coefficient minéralisation K2 - Cartographie et formule
Calcul du coefficient de minéralisation de la matière organique : formule appliquée en fonction de la localisation de la parcelle

L'infographie ci-contre présente la zone optimale pour cet indicateur.

Bien comprendre son analyse de sol - Coefficient minéralisation K2
Coefficient minéralisation de la matière organique : valeurs optimales à retenir

Si son calcul est absent de l'analyse de sol, il peut être directement réalisé en cliquant ici.



4. L'indice d'activité microbienne


Cet indice mesure le potentiel de dégradation enzymatique des substrats organiques du sol. Il varie en fonction de la quantité et de la qualité des restitutions organiques, du type de sol, des pratiques de fertilisation, de la qualité et de la quantité de flore microbienne.


Il est généralement évalué entre 0 et 5, ou 0 et 20 en fonction des laboratoires : la note la plus élevée étant la meilleure.



5. Le bilan humique


Chaque année, le sol perd une partie de son stock d'humus. Le bilan humique est une démarche importante pour vérifier si les apports de carbone au sol sous différentes formes (résidus de culture, couvert végétaux ou effluents organiques) sont suffisants pour compenser les pertes. Si le bilan humique est négatif, le taux de matière organique baisse peu à peu, la structure du sol est plus compacte, la vie du sol est affectée négativement, la nutrition de la plante est moins bonne. Dans le cas contraire, c'est un cycle vertueux qui se met en place.


Bien comprendre son analyse de sol - Bilan humique
Le bilan humique : un outil pour vérifier l'équilibre entre l'apport de carbone au sol et la minéralisation de la matière organique du sol

Le résultat du bilan humique est exprimé en T ou kg de carbone/ha.


Si cet indicateur est absent de l'analyse de sol, son calcul peut être effectué en cliquant ici.



D. Analyse de sol et capacité d'échange cationique (CEC)


Le sol contient des éléments nutritifs en plus ou moins grande quantité. Ils sont contenus dans 3 types de compartiment : les cristaux du sol (la plus grande réserve mais aussi la moins accessible), la solution du sol (très faible quantité d'ions) ou le complexe argilo-humique.

La quantité fixée sur ce dernier représente la réserve cationique du sol, autrement appelée "capacité d'échange cationique" ou CEC. Elle correspond, comme son nom l’indique, à la capacité du sol à fixer les cations et à permettre les échanges.

Elle est souvent déterminée suivant la méthode Metson. Elle se mesure en meq/100 g ou cmol/kg (certains laboratoires la donne en meq/kg, la valeur est alors 10 fois plus grande).

À propos de la CEC, l’analyse de sol fournit 3 types d’informations complémentaires.



1. La taille de la CEC


La dimension de la CEC dépend avant tout de la texture dominante du sol : elle sera faible pour les sables, forte pour les argiles. Elle augmente aussi avec le taux de matière organique.


Bien comprendre son analyse de sol - CEC, texture et dimension
CEC du sol : relation entre sa taille et la texture dominante du sol - Conséquence sur la disponibilité des éléments

Dans l'illustration ci-contre, la CEC est comparée à un verre d'eau dont le volume sera d'autant plus important que le sol est argileux et riche en MO.



2. Le taux de saturation de la CEC


La CEC est remplie très majoritairement par les ions calcium, magnésium, potassium, sodium et hydrogène. Le taux de saturation mesure la proportion des quatre premiers comparée au volume global de la CEC.

Bien comprendre son analyse de sol - CEC, taux de saturation et pH
Définition du taux de saturation et corrélation avec le pH du sol

Il existe une corrélation assez bonne entre le taux de saturation et le pH du sol. Dans la pratique, pour la majorité des cultures, les apports d'amendement basique doivent permettre d'atteindre un taux de saturation de 85-90% après opération.


Pour en savoir plus sur le choix des produits et des quantités à apporter, toutes les informations nécessaires sont disponibles en cliquant ici.



3. Composition et équilibre de la CEC


Au-delà de la valeur du taux de saturation de la CEC idéal (entre 85 et 90%), l'analyse de sol est l'occasion de vérifier l'équilibre du curseur calcium-magnésium. En effet, comme le montre l’infographie ci-contre, les propriétés des principaux cations de la CEC sont différentes. Or, sa composition a une influence sur le comportement du sol, notamment celui des argiles : en fonction de la répartition des cations, les argiles seront plus ou moins lâches ou cohésives, la dynamique des flux d’air et la gestion de l’eau s'en trouveront modifiées.

PH du sol - Bien contrôler son acidité - Les propriétés des principaux éléments de la CEC
Le calcium et le magnésium ont le pouvoir de floculer les argiles et la matière organique. Le calcium confère au sol des propriétés de souplesse, le magnésium, une meilleure capacité de rétention de l'eau.

Les travaux de William ALBRECHT ont permis d’identifier une répartition idéale des cations de la CEC.


PH du sol - Contrôler son acidité - Composition idéale de la CEC
Le calcium et le magnésium sont les deux principaux éléments de la CEC. Ils jouent un rôle majeur sur le comportement des argiles et sur celui du sol.

Le curseur entre calcium et magnésium dépend de la taille de la CEC (voir tableau ci-contre) : la proportion en calcium sera d’autant plus grande que le sol contient d’argiles, et inversement pour le magnésium. Dans tous les cas, la part ajoutée de ces deux ions est de 80%.

PH du sol - Contrôler son acidité - Equilbre calcium-magnésium sur la CEC
Dans tous les cas, la somme cumulée de la part du calcium et du magnésium est de 80%

Les pratiques d'apport d'amendement basique doivent permettre a posteriori de bien ajuster cet équilibre.



E. Analyse de sol, pH et bilan acide-base


Le pH rend compte de la concentration en protons (particules élémentaires positives) dans le sol. Ce paramètre joue un rôle fondamental sur son fonctionnement et sur la croissance de la plante : lorsque le pH est mal ajusté, le sol se dégrade, sa fertilité est moindre, les éléments minéraux sont moins disponibles, des toxicités apparaissent, le développement de la plante est plus difficile, et elle devient plus sensible aux maladies.


L'analyse de sol délivre plusieurs informations pour cette catégorie d'indicateurs.


1. Le pH KCl et l'acidité de réserve du sol


Le pH KCl représente l'acidité de réserve du sol. Il rend compte de sa limite d’acidification maximum : plus il est bas, plus le sol aura tendance à s’acidifier, plus il sera alors nécessaire d’être vigilant et de réaliser des apports d’amendement basique réguliers.